Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 229(Supplement_2): S219-S228, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38243606

RESUMO

BACKGROUND: Pathology and Monkeypox virus (MPXV) tissue tropism in severe and fatal human mpox is not thoroughly described but can help elucidate the disease pathogenesis and the role of coinfections in immunocompromised patients. METHODS: We analyzed biopsy and autopsy tissues from 22 patients with severe or fatal outcomes to characterize pathology and viral antigen and DNA distribution in tissues by immunohistochemistry and in situ hybridization. Tissue-based testing for coinfections was also performed. RESULTS: Mucocutaneous lesions showed necrotizing and proliferative epithelial changes. Deceased patients with autopsy tissues evaluated had digestive tract lesions, and half had systemic tissue necrosis with thrombotic vasculopathy in lymphoid tissues, lung, or other solid organs. Half also had bronchopneumonia, and one-third had acute lung injury. All cases had MPXV antigen and DNA detected in tissues. Coinfections were identified in 5 of 16 (31%) biopsy and 4 of 6 (67%) autopsy cases. CONCLUSIONS: Severe mpox in immunocompromised patients is characterized by extensive viral infection of tissues and viremic dissemination that can progress despite available therapeutics. Digestive tract and lung involvement are common and associated with prominent histopathological and clinical manifestations. Coinfections may complicate mpox diagnosis and treatment. Significant viral DNA (likely correlating to infectious virus) in tissues necessitates enhanced biosafety measures in healthcare and autopsy settings.


Assuntos
Coinfecção , Varíola dos Macacos , Humanos , Vírus da Varíola dos Macacos , Hospedeiro Imunocomprometido , Antígenos Virais , DNA Viral
3.
PLOS Glob Public Health ; 3(3): e0001612, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36963040

RESUMO

Each year, 2.4 million children die within their first month of life. Child Health and Mortality Prevention Surveillance (CHAMPS) established in 7 countries aims to generate accurate data on why such deaths occur and inform prevention strategies. Neonatal deaths that occurred between December 2016 and December 2021 were investigated with MITS within 24-72 hours of death. Testing included blood, cerebrospinal fluid and lung cultures, multi-pathogen PCR on blood, CSF, nasopharyngeal swabs and lung tissue, and histopathology examination of lung, liver and brain. Data collection included clinical record review and family interview using standardized verbal autopsy. The full set of data was reviewed by local experts using a standardized process (Determination of Cause of Death) to identify all relevant conditions leading to death (causal chain), per WHO recommendations. For analysis we stratified neonatal death into 24-hours of birth, early (1-<7 days) and late (7-<28 days) neonatal deaths. We analyzed 1458 deaths, 41% occurring within 24-hours, 41% early and 18% late neonatal deaths. Leading underlying causes of death were complications of intrapartum events (31%), complications of prematurity (28%), infections (17%), respiratory disorders (11%), and congenital malformations (8%). In addition to the underlying cause, 62% of deaths had additional conditions and 14% had ≥3 other conditions in the causal chain. The most common causes considering the whole causal chain were infection (40%), prematurity (32%) and respiratory distress syndrome (28%). Common maternal conditions linked to neonatal death were maternal hypertension (10%), labour and delivery complications (8%), multiple gestation (7%), placental complications (6%) obstructed labour and chorioamnionitis (5%, each). CHAMPS' findings showing the full causal chain of events that lead to death, in addition to maternal factors, highlights the complexities involved in each death along with the multiple opportunities for prevention. Highlighting improvements to prenatal and obstetric care and infection prevention are urgently needed in high-mortality settings.

5.
Emerg Infect Dis ; 28(4): 802-811, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35318916

RESUMO

Human alphaherpesvirus 1 (HuAHV1) causes fatal neurologic infections in captive New World primates. To determine risks for interspecies transmission, we examined data for 13 free-ranging, black-tufted marmosets (Callithrix penicillata) that died of HuAHV1 infection and had been in close contact with humans in anthropized areas in Brazil during 2012-2019. We evaluated pathologic changes in the marmosets, localized virus and antigen, and assessed epidemiologic features. The main clinical findings were neurologic signs, necrotizing meningoencephalitis, and ulcerative glossitis; 1 animal had necrotizing hepatitis. Transmission electron microscopy revealed intranuclear herpetic inclusions, and immunostaining revealed HuAHV1 and herpesvirus particles in neurons, glial cells, tongue mucosal epithelium, and hepatocytes. PCR confirmed HuAHV1 infection. These findings illustrate how disruption of the One Health equilibrium in anthropized environments poses risks for interspecies virus transmission with potential spillover not only from animals to humans but also from humans to free-ranging nonhuman primates or other animals.


Assuntos
Callithrix , Animais , Brasil/epidemiologia , Callithrix/fisiologia , Humanos
6.
Vet Pathol ; 59(4): 681-695, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35229669

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes respiratory disease in mink similar to human COVID-19. We characterized the pathological findings in 72 mink from US farms with SARS-CoV-2 outbreaks, localized SARS-CoV-2 and its host cellular receptor angiotensin-converting enzyme 2 (ACE2) in mink respiratory tissues, and evaluated the utility of various test methods and specimens for SARS-CoV-2 detection in necropsy tissues. Of SARS-CoV-2-positive animals found dead, 74% had bronchiolitis and diffuse alveolar damage (DAD). Of euthanized SARS-CoV-2-positive animals, 72% had only mild interstitial pneumonia or minimal nonspecific lung changes (congestion, edema, macrophages); similar findings were seen in SARS-CoV-2-negative animals. Suppurative rhinitis, lymphocytic perivascular inflammation in the lungs, and lymphocytic infiltrates in other tissues were common in both SARS-CoV-2-positive and SARS-CoV-2-negative animals. In formalin-fixed paraffin-embedded (FFPE) upper respiratory tract (URT) specimens, conventional reverse transcription-polymerase chain reaction (cRT-PCR) was more sensitive than in situ hybridization (ISH) or immunohistochemistry (IHC) for detection of SARS-CoV-2. FFPE lung specimens yielded less detection of virus than FFPE URT specimens by all test methods. By IHC and ISH, virus localized extensively to epithelial cells in the nasal turbinates, and prominently within intact epithelium; olfactory mucosa was mostly spared. The SARS-CoV-2 receptor ACE2 was extensively detected by IHC within turbinate epithelium, with decreased detection in lower respiratory tract epithelium and alveolar macrophages. This study expands on the knowledge of the pathology and pathogenesis of natural SARS-CoV-2 infection in mink and supports their further investigation as a potential animal model of SARS-CoV-2 infection in humans.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Vison , SARS-CoV-2 , Animais , COVID-19/veterinária , Células Epiteliais , Pulmão , Macrófagos Alveolares , SARS-CoV-2/fisiologia , Internalização do Vírus
7.
Emerg Infect Dis ; 28(3): 510-517, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35138244

RESUMO

Severe coronavirus disease in neonates is rare. We analyzed clinical, laboratory, and autopsy findings from a neonate in the United States who was delivered at 25 weeks of gestation and died 4 days after birth; the mother had asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and preeclampsia. We observed severe diffuse alveolar damage and localized SARS-CoV-2 by immunohistochemistry, in situ hybridization, and electron microscopy of the lungs of the neonate. We localized SARS-CoV-2 RNA in neonatal heart and liver vascular endothelium by using in situ hybridization and detected SARS-CoV-2 RNA in neonatal and placental tissues by using reverse transcription PCR. Subgenomic reverse transcription PCR suggested viral replication in lung/airway, heart, and liver. These findings indicate that in utero SARS-CoV-2 transmission contributed to this neonatal death.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Autopsia , Feminino , Humanos , Recém-Nascido , Transmissão Vertical de Doenças Infecciosas , Pulmão , Placenta , Gravidez , RNA Viral/genética , SARS-CoV-2
8.
Comp Med ; 72(6): 394-402, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36744511

RESUMO

Melioidosis, a potentially fatal infectious disease of humans and animals, including nonhuman primates (NHPs), is caused by the high-consequence pathogen Burkholderia pseudomallei. This environmental bacterium is found in the soil and water of tropical regions, such as Southeast Asia, where melioidosis is endemic. The global movement of humans and animals can introduce B. pseudomallei into nonendemic regions of the United States, where environmental conditions could allow establishment of the organism. Approximately 60% of NHPs imported into the United States originate in countries considered endemic for melioidosis. To prevent the introduction of infectious agents to the United States, the Centers for Disease Control and Prevention (CDC) requires newly imported NHPs to be quarantined for at least 31 d, during which time their health is closely monitored. Most diseases of public health concern that are transmissible from imported NHPs have relatively short incubation periods that fall within the 31-d quarantine period. However, animals infected with B. pseudomallei may appear healthy for months to years before showing signs of illness, during which time they can shed the organism into the environment. Melioidosis presents diagnostic challenges because it causes nonspecific clinical signs, serologic screening can produce unreliable results, and culture isolates are often misidentified on rapid commercial testing systems. Here, we present a case of melioidosis in a cynomolgus macaque (Macaca fascicularis) that developed a subcutaneous abscess after importation from Cambodia to the United States. The bacterial isolate from the abscess was initially misidentified on a commercial test. This case emphasizes the possibility of melioidosis in NHPs imported from endemic countries and its associated diagnostic challenges. If melioidosis is suspected, diagnostic samples and culture isolates should be submitted to a laboratory in the CDC Laboratory Response Network for conclusive identification and characterization of the pathogen.


Assuntos
Burkholderia pseudomallei , Melioidose , Humanos , Estados Unidos , Animais , Melioidose/diagnóstico , Melioidose/epidemiologia , Melioidose/veterinária , Macaca fascicularis , Abscesso , Camboja
9.
Front Med (Lausanne) ; 9: 1099408, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687432

RESUMO

Introduction: Definitive vertical transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection has been rarely reported. We present a case of a third trimester pregnancy with fetal distress necessitating cesarean section that demonstrated maternal, placental, and infant infection with the SARS-CoV-2 Alpha variant/B.1.1.7. Methods: CDC's Influenza SARS-CoV-2 Multiplex RT-PCR Assay was used to test for SARS-CoV-2 in a maternal NP swab, maternal plasma, infant NP swab, and formalin-fixed paraffin-embedded (FFPE) placental tissue specimens. Whole genome sequencing (WGS) was performed on maternal plasma, infant, and placental specimens to determine the SARS-CoV-2 genotype. Histopathological evaluation, SARS-CoV-2 immunohistochemistry testing (IHC), and electron microscopy (EM) analysis were performed on placenta, umbilical cord, and membrane FFPE blocks. Results: All specimens tested positive for SARS-CoV-2 by RT-PCR. WGS further revealed identical SARS-CoV-2 sequences from clade 20I/501Y.V1 (lineage Alpha/B.1.1.7) in maternal plasma, infant, and placental specimens. Histopathologic evaluation of the placenta showed histiocytic and neutrophilic intervillositis with fibrin deposition and trophoblast necrosis with positive SARS-CoV-2 immunostaining in the syncytiotrophoblast and electron microscopy evidence of coronavirus. Discussion: These findings suggest vertical transmission of SARS-CoV-2, supported by clinical course timing, identical SARS-CoV-2 genotypes from maternal, placental, and infant samples, and IHC and EM evidence of placental infection. However, determination of the timing or distinction between prepartum and peripartum SARS-CoV-2 transmission remains unclear.

10.
Clin Infect Dis ; 73(Suppl_5): S390-S395, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34910179

RESUMO

BACKGROUND: Minimally invasive tissue sampling (MITS), an alternative to complete diagnostic autopsy, is a pathology-based postmortem examination that has been validated in low- and middle-income countries (LMICs) and can provide accurate cause of death information when used with other data. The MITS Surveillance Alliance was established in 2017 with the goal to expand MITS globally by increasing training capacity, accessibility, and availability in LMICs. Between January 2019 and May 2020, the MITS Surveillance Alliance convened a multidisciplinary team of technical advisors to attain this goal. METHODS: This article describes the process used to develop criteria and identify an optimal location for a MITS training hub, establish a cadre of LMIC-based trainers, refine standardized MITS sample collection protocols, develop a training program, and release a telepathology platform for quality assessment of MITS histological samples. RESULTS: Results include the creation of a training hub and curriculum, with a total of 9 pathologists and technicians trained as part of the training of the trainers. Those trainers trained 15 participants from seven MITS projects representing 6 LMICs trained in MITS sample collection. The 15 participants have gone on to train more than 50 project-level staff in MITS sample collection. CONCLUSIONS: Lessons learned include an appreciation for using an iterative process for establishing standardized procedures, creating opportunities for all stakeholders to deliver critical feedback, and highlighting the importance of complementing in-person trainings with ongoing technical assistance.


Assuntos
Pobreza , Telepatologia , Autopsia/métodos , Currículo , Humanos , Manejo de Espécimes
11.
Clin Infect Dis ; 73(Suppl_5): S351-S359, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34910182

RESUMO

BACKGROUND: Minimally invasive tissue sampling (MITS) is an alternative to complete autopsy for determining causes of death. Multiplex molecular testing performed on MITS specimens poses challenges of interpretation, due to high sensitivity and indiscriminate detection of pathogenic, commensal, or contaminating microorganisms. METHODS: MITS was performed on 20 deceased children with respiratory illness, at 10 timepoints up to 88 hours postmortem. Samples were evaluated by multiplex molecular testing on fresh tissues by TaqMan® Array Card (TAC) and by histopathology, special stains, immunohistochemistry (IHC), and molecular testing (PCR) on formalin-fixed, paraffin-embedded (FFPE) tissues. Results were correlated to determine overall pathologic and etiologic diagnoses and to guide interpretation of TAC results. RESULTS: MITS specimens collected up to 3 days postmortem were adequate for histopathologic evaluation and testing. Seven different etiologic agents were detected by TAC in 10 cases. Three cases had etiologic agents detected by FFPE or other methods and not TAC; 2 were agents not present on TAC, and 2 were streptococci that may have been species other than those present on TAC. Result agreement was 43% for TAC and IHC or PCR, and 69% for IHC and PCR. Extraneous TAC results were common, especially when aspiration was present. CONCLUSIONS: TAC can be performed on MITS up to 3 days after death with refrigeration and provides a sensitive method for detection of pathogens but requires careful interpretation in the context of clinicoepidemiologic and histopathologic findings. Interpretation of all diagnostic tests in aggregate to establish overall case diagnoses maximizes the utility of TAC in MITS.


Assuntos
Manejo de Espécimes , Autopsia , Criança , Humanos , Imuno-Histoquímica
12.
Clin Infect Dis ; 73(Suppl_5): S360-S367, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34910183

RESUMO

BACKGROUND: We used postmortem minimally invasive tissue sampling (MITS) to assess the effect of time since death on molecular detection of pathogens among respiratory illness-associated deaths. METHODS: Samples were collected from 20 deceased children (aged 1-59 months) hospitalized with respiratory illness from May 2018 through February 2019. Serial lung and/or liver and blood samples were collected using MITS starting soon after death and every 6 hours thereafter for up to 72 hours. Bodies were stored in the mortuary refrigerator for the duration of the study. All specimens were analyzed using customized multipathogen TaqMan® array cards (TACs). RESULTS: We identified a median of 3 pathogens in each child's lung tissue (range, 1-8; n = 20), 3 pathogens in each child's liver tissue (range, 1-4; n = 5), and 2 pathogens in each child's blood specimen (range, 0-4; n = 5). Pathogens were not consistently detected across all collection time points; there was no association between postmortem interval and the number of pathogens detected (P = .43) and no change in TAC cycle threshold value over time for pathogens detected in lung tissue. Human ribonucleoprotein values indicated that specimens collected were suitable for testing throughout the study period. CONCLUSIONS: Results suggest that lung, liver, and blood specimens can be collected using MITS procedures up to 4 days after death in adequately preserved bodies. However, inconsistent pathogen detection in samples needs careful consideration before drawing definitive conclusions on the etiologic causes of death.


Assuntos
Pulmão , Manejo de Espécimes , Autopsia/métodos , Causas de Morte , Criança , Pré-Escolar , Coleta de Dados , Humanos , Lactente , Manejo de Espécimes/métodos
13.
Transbound Emerg Dis ; 68(6): 3207-3216, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34387927

RESUMO

Leptospirosis is a zoonotic neglected disease of worldwide public health concern. Leptospira species can infect a wide range of wild and domestic mammals and lead to a spectrum of disease, including severe and fatal forms. Herein, we report for the first time a fatal Leptospira interrogans infection in a free-ranging nonhuman primate (NHP), a black-tufted marmoset. Icterus, pulmonary haemorrhage, interstitial nephritis, and hepatocellular dissociation were the main findings raising the suspicion of leptospirosis. Diagnostic confirmation was based on specific immunohistochemical and PCR assays for Leptospira species. Immunolocalization of leptospiral antigens and identification of pathogenic species (L. interrogans species) were important for better understanding the pathogenesis of the disease. One Health-related implications of free-ranging NHPs in anthropized areas and transmission dynamics of human and animal leptospirosis are discussed.


Assuntos
Leptospira interrogans , Leptospira , Leptospirose , Saúde Única , Animais , Brasil/epidemiologia , Callithrix , Leptospirose/epidemiologia , Leptospirose/veterinária
14.
Sci Rep ; 11(1): 9682, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958613

RESUMO

The need for high-affinity, SARS-CoV-2-specific monoclonal antibodies (mAbs) is critical in the face of the global COVID-19 pandemic, as such reagents can have important diagnostic, research, and therapeutic applications. Of greatest interest is the ~ 300 amino acid receptor binding domain (RBD) within the S1 subunit of the spike protein because of its key interaction with the human angiotensin converting enzyme 2 (hACE2) receptor present on many cell types, especially lung epithelial cells. We report here the development and functional characterization of 29 nM-affinity mouse SARS-CoV-2 mAbs created by an accelerated immunization and hybridoma screening process. Differing functions, including binding of diverse protein epitopes, viral neutralization, impact on RBD-hACE2 binding, and immunohistochemical staining of infected lung tissue, were correlated with variable gene usage and sequence.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Animais , COVID-19/diagnóstico , Teste Sorológico para COVID-19 , Epitopos/imunologia , Feminino , Humanos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/imunologia
15.
Emerg Infect Dis ; 27(5): 1517-1519, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33704045

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) shares common clinicopathologic features with other severe pulmonary illnesses. Hantavirus pulmonary syndrome was diagnosed in 2 patients in Arizona, USA, suspected of dying from infection with SARS-CoV-2. Differential diagnoses and possible co-infections should be considered for cases of respiratory distress during the SARS-CoV-2 pandemic.


Assuntos
COVID-19 , Doenças Transmissíveis Emergentes , Síndrome Pulmonar por Hantavirus , Arizona , Doenças Transmissíveis Emergentes/epidemiologia , Humanos , SARS-CoV-2
16.
Emerg Infect Dis ; 27(4): 1023-1031, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33600302

RESUMO

Efforts to combat the coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have placed a renewed focus on the use of transmission electron microscopy for identifying coronavirus in tissues. In attempts to attribute pathology of COVID-19 patients directly to tissue damage caused by SARS-CoV-2, investigators have inaccurately reported subcellular structures, including coated vesicles, multivesicular bodies, and vesiculating rough endoplasmic reticulum, as coronavirus particles. We describe morphologic features of coronavirus that distinguish it from subcellular structures, including particle size range (60-140 nm), intracellular particle location within membrane-bound vacuoles, and a nucleocapsid appearing in cross section as dense dots (6-12 nm) within the particles. In addition, although the characteristic spikes of coronaviruses may be visible on the virus surface, especially on extracellular particles, they are less evident in thin sections than in negative stain preparations.


Assuntos
COVID-19 , Estruturas Celulares , SARS-CoV-2 , Biópsia/métodos , COVID-19/patologia , COVID-19/virologia , Estruturas Celulares/classificação , Estruturas Celulares/ultraestrutura , Humanos , Microscopia Eletrônica/métodos , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/ultraestrutura
17.
J Infect Dis ; 223(5): 752-764, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33502471

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic continues to produce substantial morbidity and mortality. To understand the reasons for the wide-spectrum complications and severe outcomes of COVID-19, we aimed to identify cellular targets of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) tropism and replication in various tissues. METHODS: We evaluated RNA extracted from formalin-fixed, paraffin-embedded autopsy tissues from 64 case patients (age range, 1 month to 84 years; 21 COVID-19 confirmed, 43 suspected COVID-19) by SARS-CoV-2 reverse-transcription polymerase chain reaction (RT-PCR). For cellular localization of SARS-CoV-2 RNA and viral characterization, we performed in situ hybridization (ISH), subgenomic RNA RT-PCR, and whole-genome sequencing. RESULTS: SARS-CoV-2 was identified by RT-PCR in 32 case patients (21 COVID-19 confirmed, 11 suspected). ISH was positive in 20 and subgenomic RNA RT-PCR was positive in 17 of 32 RT-PCR-positive case patients. SARS-CoV-2 RNA was localized by ISH in hyaline membranes, pneumocytes, and macrophages of lungs; epithelial cells of airways; and endothelial cells and vessel walls of brain stem, leptomeninges, lung, heart, liver, kidney, and pancreas. The D614G variant was detected in 9 RT-PCR-positive case patients. CONCLUSIONS: We identified cellular targets of SARS-CoV-2 tropism and replication in the lungs and airways and demonstrated its direct infection in vascular endothelium. This work provides important insights into COVID-19 pathogenesis and mechanisms of severe outcomes.


Assuntos
COVID-19/virologia , Endotélio Vascular/virologia , Sistema Respiratório/virologia , SARS-CoV-2/fisiologia , Replicação Viral , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Autopsia , COVID-19/complicações , Teste de Ácido Nucleico para COVID-19 , Criança , Pré-Escolar , Feminino , Humanos , Hibridização In Situ , Lactente , Pulmão/virologia , Masculino , Pessoa de Meia-Idade , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Tropismo Viral , Sequenciamento Completo do Genoma , Adulto Jovem
18.
Lancet Respir Med ; 8(12): 1219-1232, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32763198

RESUMO

BACKGROUND: Since August, 2019, US public health officials have been investigating a national outbreak of e-cigarette, or vaping, product use-associated lung injury (EVALI). A spectrum of histological patterns consistent with acute to subacute lung injury has been seen in biopsies; however, autopsy findings have not been systematically characterised. We describe the pathological findings in autopsy and biopsy tissues submitted to the US Centers for Disease Control and Prevention (CDC) for the evaluation of suspected EVALI. METHODS: Between Aug 1, 2019, and Nov 30, 2019, we examined lung biopsy (n=10 individuals) and autopsy (n=13 individuals) tissue samples received by the CDC, submitted by 16 US states, from individuals with: a history of e-cigarette, or vaping, product use; respiratory, gastrointestinal, or constitutional symptoms; and either pulmonary infiltrates or opacities on chest imaging, or sudden death from an undetermined cause. We also reviewed medical records, evaluated histopathology, and performed infectious disease testing when indicated by histopathology and clinical history. FINDINGS: 21 cases met surveillance case definitions for EVALI, with a further two cases of clinically suspected EVALI evaluated. All ten lung biopsies showed histological evidence of acute to subacute lung injury, including diffuse alveolar damage or organising pneumonia. These patterns were also seen in nine of 13 (69%) autopsy cases, most frequently diffuse alveolar damage (eight autopsies), but also acute and organising fibrinous pneumonia (one autopsy). Additional pulmonary pathology not necessarily consistent with EVALI was seen in the remaining autopsies, including bronchopneumonia, bronchoaspiration, and chronic interstitial lung disease. Three of the five autopsy cases with no evidence of, or a plausible alternative cause for acute lung injury, had been classified as confirmed or probable EVALI according to surveillance case definitions. INTERPRETATION: Acute to subacute lung injury patterns were seen in all ten biopsies and most autopsy lung tissues from individuals with suspected EVALI. Acute to subacute lung injury can have numerous causes; however, if it is identified in an individual with a history of e-cigarette, or vaping, product use, and no alternative cause is apparent, a diagnosis of EVALI should be strongly considered. A review of autopsy tissue pathology in suspected EVALI deaths can also identify alternative diagnoses, which can enhance the specificity of public health surveillance efforts. FUNDING: US Centers for Disease Control and Prevention.


Assuntos
Lesão Pulmonar Aguda/patologia , Vaping/patologia , Lesão Pulmonar Aguda/etiologia , Adulto , Autopsia , Biópsia , Sistemas Eletrônicos de Liberação de Nicotina , Feminino , Humanos , Pulmão/patologia , Masculino , Estados Unidos , Vaping/efeitos adversos
20.
Emerg Infect Dis ; 26(9): 2005-2015, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32437316

RESUMO

An ongoing pandemic of coronavirus disease (COVID-19) is caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Characterization of the histopathology and cellular localization of SARS-CoV-2 in the tissues of patients with fatal COVID-19 is critical to further understand its pathogenesis and transmission and for public health prevention measures. We report clinicopathologic, immunohistochemical, and electron microscopic findings in tissues from 8 fatal laboratory-confirmed cases of SARS-CoV-2 infection in the United States. All cases except 1 were in residents of long-term care facilities. In these patients, SARS-CoV-2 infected epithelium of the upper and lower airways with diffuse alveolar damage as the predominant pulmonary pathology. SARS-CoV-2 was detectable by immunohistochemistry and electron microscopy in conducting airways, pneumocytes, alveolar macrophages, and a hilar lymph node but was not identified in other extrapulmonary tissues. Respiratory viral co-infections were identified in 3 cases; 3 cases had evidence of bacterial co-infection.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/patologia , Pneumonia Viral/patologia , Idoso , COVID-19 , Infecções por Coronavirus/virologia , Feminino , Humanos , Imuno-Histoquímica , Pulmão/patologia , Pulmão/virologia , Masculino , Microscopia Eletrônica , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...